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The nteraction of two isolated lens-like eddies -a-i.e i-',f , - .dO-. n isekidgoli- e .iodeId.e--- -
--

I&_ztropic layer in which the lenses are embedded is infinitely deep so that ther is no interaction between the
eddies unless their edges touch each other. It is assumed that the later is brought about by a mean flow which
relaxes after pushing the eddies against each other and forming a' igure 8 ' lfcture.

Using qualitative ment sed on continuity and conservation of energy along the eddies' edge)'it is
shown that, once a"Bgre 8iiape is etlbished, intrusions along the eddies' peripheries are generated. These
intrusions resemble "itms or ' ntacle-nd their structure gives the impression that one vortex is 'iuggine''

the other. As time goes on the tentacles become longer and longer and, ultimately, the eddies are entirely
converted into very long spiral-like tentacles, These spiraled tentacles are adjacent to each other so that the final
result is a single vortex containing the fluid of the two parent eddies. It is speculated that the above process
leads to the actual merging of lens-like eddies in the ocean.

Because of the inherent nonlinearity and the fact that the problem -mensional (x, y, t), the complete
details of the above process cannot be described analytically. Theref:o, cannot prove in a rigorous manner
that the above process is the only possible merging mechanism. it is, ver, possible to rigorously show

* ' analytically and experimentally that the intrusions and tentacles are inevitable. ,for this purpose, one of the
i interacting eddies is conceptually replaced by a solid cylinder. Initially, the cy=iider drifts toward the eddy;

subsequently, it is pushed slightly into the eddy and is then held fixed. The subseqlnt events are examined in

a rigorous mathematical and experimental manner. 7 C c-1It is found that as the cylinder is forced into the eddy, a hand of eddy water starts enveloping the cylinder in
the clockwise direction. This tentacle continues to intrude along the cylinder parametr until it ultimately
reattaches itself to the eddy, forming a "padlock" flow. Simple laboratory experiments on a rotating table clearly
demonstrate that a "padlock" flow is indeed established when a lens is interacting with a solid cylinder. Using
the details of this process it is argued that, in the actual eddy-eddy interaction case, intrusions must be established
and that, consequently, merging of the two eddies is inevitable.

1. Introduction of the East Australian Current. Initially, they moved
around each other but within a period of about 20 days

Isolated lens-like eddies are common in many parts they have completely merged (Fig. 1). These obser-
of the ocean; they usually result from meandering cur- vations have generated the interest of Gill and Griffiths
rents which close upon themselves and pinch-off (e.g., (198 1) who, in a short communication, have pointed
see The Ring Group 1981; Lai and Richardson 1977; out that if two inviscid eddies with zero potential vor-
Cheney 1977). Their abundance in the ocean and the, ticity are forced to merge and conserve their potential
almost permanent, presence of mean currents suggest vorticity and mass during the merging, then the final
that collisions of lenses are probably a fairly common vortex would have energy that is larger than the sum
occurrence. The processes associated with such coli- of the individual energies.
sions and the resulting encounters are the focus of the Consequently, it is concluded that, in order for mass-
present study. conserving merging to occur, either energy must be

supplied from an outside source, or that potential vor-
a. Bckground ticity is not conserved. The experiments of Nof and

So far, there has been only one set of observations Simon (1987) have demonstrated that lenses merge
of a direct eddy-eddy interaction (Cresswell 1982; without an external source of energy so that their po-
Cresswell and Legeckis 1986). In this case, two anti: tential vorticity must somehow be altered.
cyclonic lens-like eddies have collided in te For additional studies on eddies interaction the

reader is referred to Mied and Lindemann (1984),
McWilliams (1983), McWiliams and Zabusky (1982),
Overman and Zabusky (1982), Meander et al. (1987),

Cxrresmdl au t a"= r D wn Not, Dept oroesan. and Chrisiamen and Zabusky (1973). While being
oape y, Florida Sat University, Talaleumee, FL 32306. informative, the latter investigations are not directly
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mechanism an as follows. Two isolated blobs are ini- of relatively simple dynamical considerations whereas
ially separated from each othw, they ane embedded the causes of the latter are somewhat speculative. It is

in a light&W (or heavier) infinitely deep layer so that, suspected that the change in potential vorticity is a
2 initially, one vortex does not "fel" the lreenc ofits result of shock waves that are present during the tran-

countert The eddies are then brugh togther by sient merging proces.
somean flowwhich relaxes after it pushesout vortex Both processes are highly nonlinear the interfaces
ageins the other. This creates a "figure 8" structure of the blobs strike the surface (or bottom) so that the
with a mutual boundary along which the depth does depth variations are of 0(1) and the centrifugal accel-
not vanish (Fig. We shall see that because of the, eration is of the same order as the Coriolis force so
establishment of such a mutual boundary, the eddies that the Rossby number is also of 0(l). Because of
cannot remain separated "Tentacles" are extended this and the fact that the general problem is three-
from one vortex to another and rapid merging occurs. dimensional (x, y, t), it is impossible to describe all

Following th oncusion of Nof and Simon 0 987 ) its details analytically. It is, however, possible to prove
we develop a theory that corresponds to a situation analytically that the formation of tentacles is inevitable;
where the final potential vorticity of the mergd vortex namely, it is possible to show that once a "figure 8"
a not identical to the inil potential vticity which and a mutual boundary are established then each vortex
each vortex has had. Iledetailsofourprposedmerg- must extend an "arm" around its counterpart (Fig. 3).
ing mechnism involve two main pocesse. The first To show this, one of the vortices is, conceptually. re-
is the way in which each of th two vortices becomes placed by a solid cylinder and the flow resulting from
entangled in the "tentacles" of its counterpart and the slightly forcing the cylinder into the remaining eddy is
second is the aesocated change in the potential vortic- examined. Note that since our model is inviscid it
ity. The former can be rigorously explained in terms makes no difference whether or not the solid cylinder

is rotatin&
The main idea behind the above simplification is

that both an adjacent eddy and an adjacent cylinder
/l are forcing a mutual boundary along which the depth

does not vanish. A similar simplification was used by
Nof(1986a) to describe the collision between the Gulf

colli///n) Stream and a warm-core ring. However, there are two
Side view (before collision) important differences between the Nof analysis and

the present model. The first is that while curvature ef-
fects are very important in the present study, they are

mutual entirely negligible in the Nof (1986a) case. The second
boundary is that in the present case the volume of the fluid sur-

rounding the cylinder is finite whereas in the Nofstudy
there is a continuous flow from one area to another.
These differences make the present study considerably
more difficult than that discussed in Nof (I 986a). De-
spite these diffe es, many of the techniques used in

Side view (immediately after collision) the above study are also applied here. There is some
(but limited) overlapping between the two articles be-
cause an attempt has been made to make the present

x A paper self-contained.
Because of the nonvanishing depth along the area

in which the fluid is in direct contact with the cylinder, -
an intrusion of eddy water along the cylinder's perim-

A er is established. It propagates in a clockwise manner
until it ultinattly reaches the eddy on the downstream

vortex side. At this point the intrusion reattaches itself to the
vortex 2 eddy and the combined eddy-intrusion ow resembles

the shape of a padlock. Because of reatachment the
Top view (Immediately utter collision) "pdlock" fow is tMdy and, even though the problem

is sill nonlinar, it is possible to obtein an analytical
FuL. 2. I mudie dbwm a(*s im W t oftwo bod i- solution. Tis can be adiioved by using a costraint

like Wm. A ii ,view Of 6th u tr to may Im I m r.3M'ja from Wint the equations repstngI e~n w. The mill ad bmw Put* dil h dsde m pve
Stwo. wlb midled ler - dy un i esad tOP vie the tonqu relative to the cemer of the cylinmr.

1 mTe d, rn s lower ie b -ta,. of ftmlymis nd discumon in the por is devotWedF
c ontains .color to the padlock flow. The mere existence of a nonvas-

plateD : All DTIC resproduct.. DTuO

Ion will. be la black and eeI,
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intrusion of vortex I noulli integral to the streamline connecting points A

/ along the edge of and B assumin temporarily, that the flow is steady
so that the eddies' response (to the establishment of a

vortex. 2 mutual boundary) consists indeed of a mere adjust-
ment in the vicinity of point B,

UA 2/2= U2/2 + g'5, (2.1)

where uA is the upstream speedI (in the x direction)
along the front (point A), and u3 and hs are the speed
and depth at B.

Since A3 is always positive, (2.1) implies that us
< u^. However, if the steady response is in the manner
shown in the lower panel of Fig. 2, as we have tem-
porarily assumed, then continuity implies that there

Intrusion of vortex 2 along must be some convergence across the line connecting

the edge of vortex 1 point B and the center of the vortices. This suggests
that us > uA. The above conditiom, required by the

Ro. 3. The bWinains of the double intusion Wong the ed continuity equation and the Bernoulli principle, are
of the eddies, obviously incompatible, suggesting that there cannot

be a streamline connecting A and B. Instead, it is ex-
pected that there will be a band ofwater flowing around

ishing padlock flow illustrates that intrusion of eddy the eddies in a clockwise manner (Fig. 3). In other
water along the cylinder is inevitable. We shall se that, words, particles moving along the vortex edge (i.e., the
consequently, one is led to the conclusion that inter- front) do not have sufficient energy to rise to point B
leaving and merging must take place. The padlock the- and, therefore, must go around their adjacent vortex
ory is supported by a series of laboratory experiments where the fluid is lower.
on a rotating table. A formal proof for the inevitable existence of the

This paper is organized as follows. In section 2 the edge intrusion is given in the following sections with
general structure of the merging c described aid of the so-called padlock flow. However, it should
in detail; this description is largely qualitative. The be pointed out that for the special case corresponding
simplificaton of the processes in question and the to UA = 0 (i.e., a vortex with a zero speed along the
equations sovaning the padlock flow are given in sec edge) no proof is really necessary because under such
tion 3. Section 4 contains the appropriate scaling, and conditions (2.1) can never be satisfied. The establish-
section 5 includes the solution for the padlock flow. ment of tentaclelike edge intrusions along the rims of
The laboratory experiments are described in section 6. both eddies creates a structure similar to that displayed
The results are discussed in section 7 and smnmwized in Fig. 4a. As time goes on the tentacles become longer
in section B. A list of symbols is given in the Appendix. and longer. Since the volume of each vortex is finite

the tentacles will ultimately form a single vortex con-
2. A qmulathe dsuaipds of the meging proms sisting of two adjacent spirals (Fig. 4b).

By equating the volume of each individual blob to
The material presented in this section is mostly de- the amount of water drained via the lengthening of the

9criWtie and somewhat speculative. Cosider again the tentacles it is possible to estimate the total merging
two isolated blobs shown in Fg. 2. The blobs have time. Specifically, suppose that eR denotes the dis-
uniflrm denity and the slightly lighter fluid in which tance that each vortex is initially "pushed" into its
they me embedded as infistdy dep. Initdialy, the blobs counterpart (where Rdis the deformation radius which
do01 t0uch cach other so that there is no repulsion is of the same order as the radius of the eddy) and that
or atbIctiGi A denotes the eddy central depth. Also, recall that the

SUpMpe BOW that 0ine mea bw hasbouhtthe intrusion advances in a similar fashion to a gravity
IWO 1415 tngihW so that the ~ houiati pro. current so that the propagaion rate is of the order of
jeetlem iembhs the "aum r .pe and a mutual the Kelvin wave speed (es'A)' /2 (e4, see Griffiths
bosfy is sftba M (ft 2); WW rthis happ the 1986). With the aid of this information, we can now
Smm Aliw -9 OIN lila! t int M ftI US tha equate the volume of each eddy [ O(Rh)] to the
llmfifi' m toi th e i'o iu ahmu-m tauu- , the IuiO width, times the in-
Ut tm y mAy duply eeft fa load ad.
JOusila w is as l of oprait ow ver, a dorn
casi eme. To uaow tim oomMur a n p oe oftbe isr- ,ia-, ,n u.
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cows is only possible under rather special conditions.
That is, it has been demonstrated tha steadily prop-
agating solutions which do not involve shock waves
are only possible for specific circumstances. These spe-

... cial solutions are not the most general solution to theV problm which must involve steepening and dissipation
associated with depth discontinuities. In an indepen-
dent study, Nof (19M~) has demonstated that rotating
shock waves cause a major alteratio of potential vor-
ficity. We, therefore, speclte that, as the duid is in-

... . .... .truding along the adjacent vortex edge, its potential
vorticity is altered.

.. . ... .. Note that, during the mergng all the fluid in the
... WUNIXvortices is processed by the shocks so that the potential

........ . .... vorticity of all the fluid is altered. CGriffit and Hop-
.. .. finger (1987) argue that this was not the case in their

... ......... .**. . merging experiment. They contend that in their linear
.......... ... eddies only a small fraction of the fluid could be pro-

cessed by the shock. While this could have been the
case in their experiments, intrusions with zero potential

FIG.4a.Schmati dip= f te ede itruionvorticity such as ours will process all the fluid contained
in a adancd sop.in the vortex. This can be easily seen by examining the

ion's nose. ft is expected that in such a system, all the
trusion depth -0)and the intrusion propagation intruding fluid will circulate through the shock because
speed -O(eg'h)" multiplied by the merging time the shear is of 0(1). Unfortunately, a quantitative de-
(t,,). This gives tailed analysis of the shocks in the intruision is quite

complicated. It is beyond the scope of this study and
(2.2 winl be the subject of a future investigation.

wich shows that if the relative distance that each vor- This completes our qualitative, and somewhat spec-
tex is "pushed" into the other is, my, 0. 1 and the CA>- ulative, description of the merging processes. We now
uiofli purameterf is -10-4 sec-1, then the merging turn to the rigorous part, of the analysis where the
time is roughly 30 days. "padlock" flow is analyzed.

The above proet e strongly sumeest that merging
will indeed take place. There remain, however, two

importantat that need to be addressed. The first
is that we still need to rigorously prove that the intru-
sion we indeed inevittae. The seon is that we nee
to explain how the potential vorticity isaltered during
the merging. The former aspectr is rigrously discussed ...
in section 3-5 whereas the batter is qualitatively ad-
dressed below.,

it is argusd that the alteration of potential vorticity
is proba*l achieved via the action of shock waVes 2 in
the nom of the intruision. The fatct that intruisions con-
tain bores is not new. It was first pointed out by Den-
jankin (196) for nontaftims The laboratoryex-
Peruauss of Skvn do A (PP32), 0rI~ha and Hopfin-
Pr (Mh-s3,d Kobokaw and Hfm w6), and

(1986) £uMP that m itrndom S*0 211W...e
doo Ps *0 cw Awok ves... ..

Also, tie ft*dy fWNf(1997) bhmjoahrs thakt

2 rW " abes w ah~ i m fly senasa Noes down malseem Iua afen.,basm ea lbintiem endk 5
ma~20 IN*bsa Ninpmotasom 10 tm- bommae a"IWO~eis
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3. "h steady "Padlock --e-gwonh eqndm

The present section has two aims& Firt we want to
show that the eddy's response to the preem of the
cylinder cannot consist of a mere adjustment in thre
contact are (fg 5). Namnely, we wish to prove that ......
there must alwaysbe a flow around the cylinder so that
the timez dependent intrusion (Mig. 6a) is inevitable.
The second aim is to find how the eddy responds to
the forced cylinder. Specifically, one would like to
compute the Padlock flow speed, width and depth as
a function of the distance that the cylinder is pushed
into the eddy. Bemause of the inherent nonlinearity of
the problem, which has not been removed by our aim-
plification, it is unlikely that one will be able to find..... . .... .*. ... .. .. .

anialytical solutions for the whole field. Consequently,
we shall make an attempt to find the desired flow pat-
tern without solving for the entire field.

a. General description

Consider the system shown in Fig. 6b. The origin of
our coordinsa system is located at the center of the
cylinder, it will become clear later that this choice is

Mi. 6L. The initia intuion saW. Ultiniatey, the intusion mat-
tches itself to the eddy and a stady "padock flow is estblshe.

not atbitrary. The x axis is perpendicular to the line
connecting the center of the cylinder with the center

oftevortex; the y axis is a continuation of the above
line and the sytmrttsuiomyat! /2abuth

deep motionless, layer, its potential vorticity is zero.
T"he way that the padlock flow is conceptually formed

.......... is not important for Our analysis. It is useful to point
X ouit, howeve, that one can thuink of several ways by

XW which it can be established. An obvious procedure is
to physically force the cylinder into an eddy. Another

.::~~s.'*.*method is t%~ conceptually, pull out a long tube (con-
taing heavy fluid which is not, necessarily, at rest)
in the neighborhood of a solid cylinder. A thir method
would be to iject the heavy fluid near the bottom of
the cylinder.

Whatever generation method is used, there will be
some period of auutment, and ultimately, a steady
flow will be established. At this final stage (ftg 6b) the
boundaty of the solid cyline extends beyond the
boundary oft am Vao ptntial veic" tyd whose depth
ad center lan alined with those at the padlock flow.
We defit t ar vert to he owr "nduffstd"

FWAA ~ ~ ~ ~ ~ ed Iel 6 1d-- 1VOfnt *" though it is not 000ily Ides"ca to the
Fie. S. A ~ ~ ~ hee f Ims e duoto the time dependent processes

CiGU ~ ~ ~ 1 1 0 Ila 1 111~S5i hubm As bS ealed, the manner in whic the padlock flow is
*bdy h ita it. Ibia~r t

is~e oils IIIem ~aa astsbl~d is not important far the presnt analysis.
mCommosimsbasi d *Wet WM~ to And out is whether or no the Anal

Ma. 6s)sm w 60 N' a * wkn'~ sa i eW adutd Mut em o*l to usoekWa with a padlock



JUNE 19M DORON NOF 893

y

section (2)

.G / undisturbed vortex

FI. ib. Schematic diasIrm of the "paedlock" flow. Point A ii defned as die point
at which te sped of the adjk flow vaai hs th depth at A and th radius of
th~)Ind1IIbt4 vmta (which as cntered at A and has a maximum depth A) is

2 F~lwm ('A)" /$].

flow. Namely, we ask the 1bolowins questioit Is there where u and v are the horizontal depth-independent
a solution corresponding to a mere adjustment in the velocity components in the x and y direction, and the
contact area? The answer to the latter question would subscripts 1, 2 and 3 denote that the variable in ques-
be positive if the width of the padlock flow turns out tion is associated with sections 1, 2 and 3, respectively.
to be zero. We shall se that this ii not the cue; i.e., Note that because ofthe symmetry of the problem (i.e.,
we shul aeethat themust be aflow arund hecyI- v, O,h 1  Oalongcrosasections l, 2and3)thex
inder whenever the apse of the unitre vortex cx- momentum equation [d,,/8~x + v,(ul8y) - fv,
tendsbeyondtheue ofthecyinde(e, €0). =--g'(8hlBx)] and the continuity equation (3.1c)

imply that
b. Governing equltatons for sections 1,2 2and 3

The Iovering equations for the final adjsted state jx =O. (3.2)

mew th usua shtallo wat wequtoso hae pdok In adiin note tht, as in may radially symmetric
flowwithneropotetialvortcitywe hveeti t/ss u x is not necesarily zero where x -0O even

&i/Ix-ud / y+f-, 1-1,2,3 (3.1*) thonlav=O.
The boundary conditions fr sections I,2 and 3 are

i *' =1,23 /(.lb h " y~r~-r ) )i e ,

LE

Croo

"' ' I IIIIII I~i IFiII
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ul-vi 0; y = -ro(l - E) - 2 . Rd (3.3c) To show that (3.8) provides an additional connection

Jul2s32jt(l+7 3) (3.4) between sections 1, 2 and 3, it is multiplied by h and
the continuity equation (3.7a) is incorporated. This

[IU2
2 + 2gh 2 ]j.-, - [u3

2 + 2 g'h3] -,b (3.5a) gives
h2=; y -ro(l-,)-21r2-R (3.5b) a(hu2y) + y ±(huvl-fVyh + -(h2ylOx .3y 2 Ox

u2 =v 2 =0; y=-ro(l-e)-2f2RA .(3.5c)

h3 = 0; y = 11( + 31, (3.6) x (hv) - ( 2 )-hx

where ro is the radius of the cylinder and R is the g (h2x) 0,
deformation radius based on the depth at the center (3.9)
of the padlock flow (Le., where the speed vanisbs) so
that the radius of the undisturbed vortex is 2Y2 • Rd. which can be rearranged and integrated over the region
The -f and y3 denote nondinensional locations at shown in Fig. 7, to give
which the depths of the flow in sections I and 3 vanish
(Fg 6b). Conditions (3.3a) and (3.6) state that the f h~ fy+ ~ UXdddepth of these flows vanishes at some unknown loca- f ua 7 -f y + h2 y - huvxjdxdy
tion; conditions (3.4) and (3.5a) reflect the conser- _ x
vation of energy along the streamlines that bound the
Namely, (3.4) and (3.5a) are simply a result of an ap- + huvY+fox- h2X - hV

2

plication of the Bernoulli integral to the streamlines _® a 2

connecting G and E, and B and D (see F'g. 6b). Con-
ditions (3.3b) and (3.Sb) state that at A the depths of dxdy= 0 (3.10)
the two sections are identical to some given depth (A)
and (3.3c) and (3.5c) reflect the requirement for a
vanishing speed at the center of the vortex.

It is important to distinguish clearly between the un-
disturbed state and the initial state. As mentioned be-
fore, the undisturbed vortex is defined as a zero poten-
tial vorticity vortex which is centered at the center of
the padldock flow (i.e., the point where the velocity
vanishes) and has the same dpth as the maximum
padlock flow (A); its mdius is 2V2 • &.'he initil state,
on the other hand, is the ato which leads to the in- ,
trusion and the padlock flow-of no interest for thepreent study, i

c. Comzsraints
The fows in the various sections are connected to

each other via (3.4) m (3.5) but there ar two ad-
ditloum contraints that the unknown variables must
udy. The fra rent am y from contauity and
a be wri in the form,

uhdy + u2kdy + r h3dy - 0. (3.7)

The lsoecod=to will be derived from the corn-
wvatiea f trup. NA is Nof (1936), we beiby TA
10m t lne unM in 01mmotum oamspodss to
the crwpoda the a podin vector rmd the mo-memo eqwmk

++ + fs+ a' 0. (3.S) P . 7. An I IadIof lntfbrib eompiiation



Jue 1988 DORON NOF 895

where 4 is a streamfiinction defined by 4. Scaln ad expanslo of the padlock flow
___ _ a. The basic state

a h Before discussing the scaling of the problem and the
general structure of the expansion, it is instructive to

By using Stokes' theorem, (3.11) can be written in the look at the details of the basic state. The structure of
form, the zero-order state, corresponding to the cylinder

"kiing" an eddy with zero potential vorticity, is not
(hu2y-f~+~+ h~y -huvx)dy- j (huuy a priori obvious. To show this, consider the application

of the Bernoulli integral to the surface of the cylinder
hxv2) (.2 (3.5). It implies that even when E - 0 the velocity

-x * =0. (3.12) along the cylinder surface is of 0(1) because the eddy
2 fspeed along the edge is O(l) [see (1.1) with r

where. is the boundary ofthe flow. This equation can = 2(2g) 12/f]. As in Nof (1986a), this means that
be further simplified by defining 0 to be zero along the the basic flow around the cylinder is not zero; rather,
edge where h - 0 and noting that along any streamline it consists of an infinitesimal ribbon flowing at a speed
usdy =- tvdx. Ibis gives, (2g'h) 1 2. To find the details of this ribbon flow it is

noted that even though the basic state contains only
an infinitesimal strip, it must, of course, satisfy the

( hu2 -f4, + g'h2/2)ydy equations of motion.
In this context, it is convenient to consider the po-tential vorticity equation and momentum conservation+J (hu2 -f* + g'h2 /2)ydy in cylindrical coordinate (r, 0),

Id
+ (-fjy + ghay/2)dy rr K-0 +f= 0 (4.1)

D 2 +X' = g= (4.2)
- (f4,X - glh2x/2)dx = 0. (3.13) r7r

where V# is the tangential velocity, the bar (-) indicates
In deriving (3.13) it has been taken into account that association with the basic state and we have assumed
the sum of the integrals of hu2y and huvy along BD that the basic flow is purely tangential (i.e., U, = 6/8V
vanishes because there is no normal flow through the = 0). The most general solution of(4.1) and (4.2) is
boundary of the cylinder. fr a

The first two terms in (3.13) are the moments of 2 r
the flow foce in sections 1, 2 and 3. The last two terms,
ontheotherhand, representhetorquecorresponding (ri r0

2 - r2 ) 2 + 2] , (4.3)
to the presure exerted on the cylinder by the sur-
rounding flow. Since we chose our origin to be in the where a is an unknown constant and we have used the
center of the cylinder and the pressure is always per- condition Ai =0 at r = ro. Since at r = ro the absolute
pendicuiar to the surflce with which the fluid is in value of the velocity must be (2g'A)1 /2 (in order to
contact, we would expect this torque to vanish. It is stisfy the Bernoulli relationship along the surface of
easy to show that since the cylinder surfic is given by the cylinder), we find from (4.3) that
X2 + yl _ r0

2, we have xix + ydy -0 so that the sum
of the last two inteals in (3.13) equals zero as ex. fo
pected. Hence, the integrated torque takes the ample a 2(r - (4.4)
form, Where& _ (g'k) /2/f. Namely, for any given cylinder(hil -ol+ g,22)(yre), we must takea Aspeifc value forae. Forsi lity
f0 (ht u,2 -f~ + g'h,/2)ydy we shall consider only cylinders with ro = 22R syo

that a - 0. Other cylinders can, ofomrse, also be con.
+ (h 2l 2 2 sidered and the solution, which will be shortly derived,

+ ( - +g'lh12)ydy can be usfly extended to cyinders with all diameters.
However, such extended solutions do not provide any
new -hm iast and, therelboe wte not presented.

+ (koft -f#3 + g' 3
2/2)ydy - 0, (3.14)

b. Scaling
whm we e i UorpWd our seci noatiou ibr In *a sqent anais the folowing nondimen-
the va om dlon, sional variables will be used:

I
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uo = u/(g'I) 2 ; v* = v/(g'A1) 2 ; 1 h? = 1; y* = -2f2-(2 - t) (4.8b)

ho = hlh uV? = 0; y* = -2f2(2 - e) (4.8c)

x* - xlR,; y* yl ; . (4.5) [(u?)2]y..2, 3,-) = [(u1)2 ]J 2 ,/+1.,) (4.9)

rl = rolRd - 2V2; r* = rlR [(uf')1 + 2h ] .- 20

* = */[jL(h) 2/f]; R& _(g')i/f - [(ut) 2 + 2hfl].-242  (4.10a)

Note that in sections I and 3, which are located far h' = 1; y* = -2f2(2 - E) (4.10b)
from the contact area, the flow is taken to be purely
tangential. Thisis dealy supported by our laboratory ul = vT = 0; y* = -2V2(2 - E) (4.1(c)
experiment (section 6). In section 2, however, some h= 0; y*= 2V2-(l + 7 3) (4.11)
deviations from radially symmetric motion re possible
because of the presence of the cylinder. In view of this, Similarly, the constraints (3.7) and (3.14) can be ex-
we shall use polar coordinates for sections I and 3 and pressed as,
Cartesian coordinates for section 2. [The subscript 0 -2( 2-.) -2,
will denote association with polar coordinates(i.e., vo uthdy + ufhfdy*
is the azimuthal speed) whereas the lack of a subscript f-2, -- ,)2-,
will indicate that the variable in question is associated 240*73)
with Cartesian coordinates.) For section it is con- + f uthIdy* = 0 (4.12)
venient to transfer the coordinate system amnd use cy-
findrical coordinates (1, i) situated at the center of the j-2 J](2-.)
padlock flow [0; -ro(2 - e)]. In terms of thie nondi- J-200--y,) [hf(ut)2 - 4,? + (ht)1/2]y*dy *

mensional numbers defined by (4.5), the governing
equations for this section are - 2,f2

1 d 2/F+D "(4-a-+ f2h/2(2-4) [hl(uf) 2 - p + (hl) 2/2]y*dy*

Id d;i1  J2/2(1+7)
I( 0+1 (0) 2/P'+ V = - - . (4.6a) 4 )

where P, are related to the original coordinates system + f-2/2 [ h t ( u ) 2 _ O +(ht)2/2]y*dy
*

(x*, y*) via, =0. (4.13)

Fsina = y* + 2f2(2 - e); Pcom) = x* (4.6b) c.- Perturbation expansion
i.e., . = y* + 2l2(2 - =); - x*]. For section 3 it As in Nof(1986a), the expansion in e is not straight-
ie not advantageou to t r te or sen 3 forward for two reasons. First, as already pointed out,
is not advantageous to transfer the coordinates system basic state (t = 0) contains speeds of 0(!). Second,
We, therefore, take, the choice for the origin of the coordinates system im-

I d (Vt)2/r * + dh? plies that the basic flow is a function of e. Recall that
r*d i ) + + = - the choice of the origin for the coordinate system was

(46 "imposed" by the use of the integrated torque. If the

(4.6c) origin were in any other location, then the integrated

The nondimensional equations for section 2 are torque associated with the pressure along BCD would
found from (4.5) and (3.1) to be have remained nonzero thus making it impossible to

0 (4.7) connect the three sections. It will become clear shortly
- + 10 (4.7a) that while these conditions make the expansion some-

Yx*90 what more involved they do not present any funda-
mental difficulty.

' - + u' - ---. (4.7b) Itisassumed hat, for sections I and 3, the expansion
clx* ayhas the form,

0-- 0 (4.7c) D= -P/2 + eOI, + (21, + ... (4.14a)

dA = I - (P)2/8 + e,(" + e2l,(2)+ " (4.14b)
wm we hm take i0to accout that v- 0 because 71r )  + (4.14c)
of Wmmuy. (Not howe , Wtmsnm nioedl be-.
fer.,.u at aiub!/Dx~auaotnee iy uv = -r*12 + ev,( + E2v,(p,) + •.. (4.15a)
zero eme thou&a u! - 0.) The boundary conditions
(3.3)-(3.6) take te tfom, hl I - (r*)2/ + E'Eh(1) + 2h3 (

2 ) + • (4.15b)
h? "0, '*"-215(3 - yjt (4.ha) _ys3,ey ) + #2-r(2) +... (4.15c)
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where (4.3) and (4.5) have been used to express the I d(5.1
terms corresponding to the basic state. Note that, as - vi ) o. (5.1)
before, the tilde ( ) denotes association with a polar

coordinates system whose origin is located at the center The solution is: '") = A /, where A1 is an unknown
of the eddy instead of the center of the cylinder (x* constant. Since Do(" cannot approach infinity at the
= y* = 0). The relationship between F and x* and y* center of the vortex (F = 0) we find that
is easily found from (4.6b) to be, D") = A, = 0 (5.2)

p - {(x*) 2 + (y* + 2f2(2 - e)] 2}1 2. (4.15d) and()= B, where B, is a constant to be determined.

As in Nof (1986a), the expansions (4.14)-(4.15) At the center ofthe vortex the depth A must match the
take into account that the width of the flow around undisturbed depth (A = 1) because of our definition of
the cylinder ('Y3) is O(eRd) because this is also the the basic state. Hence, we have B, = 0 and
width of the flow blocked by the cylinder (i.e., section A 0 (5.3a)
BB', Fig. 6b). In other words, the width of the flow in
section 3 is of the order of the distance that the cylinder Also, with the aid of (4.8a) one obtains,
is "pushed" into the eddy. The depth near the cylinder
boundary in section 3 must be of the same order = 0. (5.3b)
as the d at B because the blocked transport !s It is a simple matter to show that, in a similar fashion
O(g'he /2f) and the transport at cross section 3 Is to the first-order solution, the second-order solution in
O(g'h23/2f), where h3. is the depth nefr the wall at section 2 also vanishes, i.e.,
section 3. Namely, a Taylor series expansion (around (2) (2) 0
the edge of the undisturbed eddy) for the depth at B /1,

2 = ,2 = (5.3c)
shows that he - O(eh) and, consequently, h, .
-O(eh). These scales are consistent with the scales b. Simplified equations for section 2

that one finds along the immediate vicinity of the rim From (4.16) and (4.7) one finds the O(e) equations,
of any lens-like eddy.

As mentioned, in section 2 the flow is not necessarily 0V2  C ) 05.a
radially symmetric so that the expansion is ax* ay*
u= [y* + 2f2(2 - e)]/2 () 2 () ) M2/2 - h2 (1) (5.4b)

+ U2( I) + f 2U2( 2 ) + -" (4.16a) u2 0X + U2 - Cy*

ul = -x*/2 + v2. 2 ( 2 v2 1 2 )+ - (4.16b) [

hf = I - [y* + 2Y2(2 - e)]2/8 [(1 - (y) 2/8)u21 1 ) + h2o'/21 = 0. (5.4c)
+ eh2 M') + e2h2(2) + • • .. (4.16c) The O(e 2) balances are

Recall now that because of our choice for the origin 0v2 (2) au2 (2)

of (x, y*), our basic state contains e when it is ex- Cx* 1y* 0 (5.5a)
pressed in terms of x* and y*. While this does not
create any difficulties, it is perhaps more elegant to U2() &2(1). OV2 (2)(Y*-
express (4.16a) and (4.16c) in the form, -- 1* -2
ul = [y* + 4f2]/2 + e(u2(' ) - 162 (2) hM(2)

+ f
2 U2 (2)+ . . . (4.17a) (5.5b)

hf - I - (y* + 4f/2)2/8 + e(h 2 ") + y*'f2/2) {[h 2( 2)y +

+ E2(h2 (2) - 1) + • • -. (4.17b) hu

In this form, the power series are expressed in a way +[l-(y) 2 8Ju 2'
2 )}-0. (5.5c)

that clearly seprates the zero~orr terlms froD the The geometry of the section in the immediate vicinity
reMainin$ ternoL Hereafter, the first terms in (4.17) of section 2 is shown in Fig. 8.
will be referred to as U2( ) and h2 m0° , respectively.

S. S. . fatI I.w c. General solution for section 3

a. Generl solion forsection I By substituting (4.15) into (4.6c) and eliminating

oof (4.14) into (4.6) and elimination of the basic state, one obtains the equations,

OW O MM)conupoaf to the basic state Vve. the dr*d +er.v(2P]+O(e ) =0 (5.7)

+ eVuatim (.

I l SSIl iBa
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y 73(I) As we shl see, there are two equations and a
boundary condition (4. 1IOa) that we have not used yet.
The latter immediately gives,

V =U h2(') at y* -2V2. (5.13)

0d The torque constraint

Since M~) - 0(73) - 0(e) it follows that the third
integral in (4.13) is, at the most, 9( 2 ). With the aid(I - r/2 FO ofthe transformationR = y* + 2Y2(2- e) and (5.3b),

H the approximate form of (4.13) [Up to 0(E2)J Can be

e tt r 0 [ l( 12 1) 2 - ,p l + (A ) 2 / 2 1 ( ffl - 2 V r2 ( 2 - ) d

socton ) A+ fj2 47-, [h2(ui2)2 - 'P2 + 0A2)2/21

X T2- V(2 _ e)]dp + Q(C2) = 0 (5.14)
MG. . Te gerne inthe iciityof wtio 2.where, as before, the tilde (') above the variables u, 'P

and h* indicates that they are expressed in terms of 9,
dh31  (.) . Substitution of (4.14), (4.17), (5.2) and (5.3) into

0 dr 58 (5. 14) and elimination of the basic state gives,

It will become clear shortly that the term containing 21) [220a2(V + (g2
t0))2h2 0' - 421

V (23 is actually 0(f) and not 0(f 2) so that it must be 0~
included in the 0(e) balance.

To simplif the structure of (5.7), it is recalled that + A2(O~h 2
t1 JCP - 4f2-)d1 + k)al))

the first-order flow (in section 3) takes place within a
distance of 0(e) from the cylinder surface so that, as - VA) + 02 (0 ) 2/2]( - 4V2)dp + 0(E2) = 0.
in Nof (I986a), one may introduce the transformation, (5.15)

r*= 2V2-(l + EV) This equation can be further simplified by noting that
where t* - 0(1). In terms of this new variable, (5.7) the second integral is associated with the area where
is, h12(0) - 0(e), and ~2(O) -0(0 2 ) so that it is, at the

I_ db4 W ~ dv most, of 0(( 2). Hence, to 0(e), (5.15) reduces to
+V",i) + 0(f 2 ) =0 2

2f2 A~* + 1 2T2- A* j 2A2 (0 ) 2 (a 2 (1) + (il2 (01)2h2 '1)
which shows that dv '11d* = 0. This and (5.8) give, - ()+ h 0) 2 ip-4f2)d7 + 0(E2) = 0

v~V B3  h3 " = 3  (.9)which, in terms of the x , y* coordinates, is
where B3 and A3 are constants to be determined from 2j
the boundary conditions. Substitution of (5.9), (4.15), 12h2()U(0U()+(2())h21)-2()
(5.2), (5.3) and (4.14) into the polar versioni of the JI- 1

2 u t  ( 2 O)h(
boundary conditions (4.9) and (4.11) gives + h2 ()h 2()]Y*dy* + 0(j2) = 0. (5.16)

j-f/)JL~(1+.,V= f-r*/2 + eB 31r'.. 2,1i,+Y3(I) A solution satisfying (5.16), the boundary condition
(5.10) (5.13) and the governing equations (5.4a-c) is simply,

[I - (r'*) 2I81 + eA3 - 0; r* - 2V-2(l + ey3(1 ))U() h_~') = 02 M.0. (5.17)
(5.11) This leaves only one unkcnown, y30), which will be

which, with the aid of (5.3b), yields, computed from the Q(e2) balances.

B9 - V2y3 "); A3 -2 3  (5.12) e. The second-order balances

By now, most of the first-order solution for section 3 Two comments should be made before discussing
has been derived; the only pir that is still missing is the 0(e 1) equations. Ffrst, the 0(c.) continuity equation
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is automatically satisfied by the O(e) solution that we Similarly, the solution for section 2 is
have derived for section 2. Second, although the O(e2) uf = 7/2 + 0.366fi1 + O(d )

continuity constraint involves the O(e) variables in
section 3, it also involves the O(E2 ) variables in section v1 = 0
2. In other words, as in Nof(1986a) it is necessary to
find the (E2) solution in sections I and 2 in order to ht = [1 -(?)2/8] -0.183 () 2 e2 + O(e 3)

obtain the O(e) solution in section 3. (5.20c)
In view of this, we shall consider now the O(j2)

potential vorticity equation, the momentum balance, which in the (x*, y*) coordinates can be written as
and the local continuity balance for section 2 (Eqs. u? = (y* + 4V2)/2 - V.
(5.5a-c)] which have the solution,

(2) 8 (2) + 0.366(y* + 41/2)f2 + O(E3 )
2(2) = ; vw -=(2) = -6y2/2 (5.18) h- = 1 - (y* + 4 1/)2/8 ]

where 6 is a constant to be determined. + e(y* + 4V)f2/2 (5.20d)

This solution satisfies the boundary condition u2
(2)  - (0.18 3 (y* + 4f2V)2 + lje 2

V2(2) = h2(2 ) = 0atx* = y* = 0 as required. Together
with the firt- and second-order solutions for the various + O(e 3 )
sections and the second-order solution for section 1 vI = 0
(relation (5.3c)], the second-order balance of the in-
tegrated continuity equation gives For section 3, the solution is,

I + 2 (113 ()) 2. (5.19a) u? = -y'/2 + 1.861e + O(E2 )
Similarly, the second-oder bulance ofthe integrated hf = I - (y*) 2/8 + 2.632e + O(e2 )torque (4.13) yiels ..11+ 2 (5.21)

3.4678 - 3 + (-,3(1))2 = 0. (5.19b) l.316e + 0(e 2)

Equations (5.19a) and (5.19b) have the solution, V 0

Note that since Y I, the width of the intrusion around
7 1 = 0 the cylinder, is not zero for e * 0 there must always

=.6 5 = 036, (5.19c) be a flow around the cylinder as stated before. Due to
the cylinder, part of the circulation in section 2 is

This completes the derivation of the solution. blocked. Consequently, the flow intensifies near the
cylinder surface and the portion of the eddy flux that

f The complete solution is "blocked" (by the cylinder) is simply diverted from
its original position to the perimeter of the solid cyl.

The total solution for section 1 is inder. The solution demonstrates that, no matter how

u? -R/2 + 0(e3 ) small the penetration of the cylinder into the vortex,
=?/2 }O )  a current engulfing the cylinder must always be present.ht' - (I - (.p)2/g] + O(e3)  (.2) .taet etimt

ID' " 0 (.0)6 ~~~W
To ames the weaknesses and limitations of the fore-

-,0 + O(e) going theory a set of simple laboratory experiments on
In M the m or coordinates I e a rotating table was performed. The lens-like eddy was

formed on the bottom of a cylindrical tank by injecting(4.6b)], ft tabu the *lIIU, dyed salty wate through a tube (3 cm in diameter)
- (y* - containin a permeable foam. A cylinder (5 cm in di-

U? 41)/ f2. 0( 3 )ameter) w Atuateda distance of 5 cmmay from the
- [ - (y 4 )1/g1 center ofthe tank where the ijjection tube was located.

+ (YO + 4i ) -e2+ +0( (.2043) First, the tank (45 cm in diameter) was filled to a
+f 0* + 2height of 25 cm and rotated counterclockwise atauni-

- -0 + " 0( 3) Jfrm rotation Me untilthesutem remchedasolidbody
rotation. The expeiment began with the injection of

whim, pinmd out WriW, the ms of 0(e) in the dyed lty water fm the bottm. This formed a
(5.20b) s mt n 'dymmiml Pertt t but em with a cental height of a few eatmetersL The
rathe a amut of r cho i flr the oriin of the c. le dowly imaed in du until it Aed the edge
ordinMe sm. of the cylinder whe a cylinder-4em iWro took
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H.9. Subsequent photographs of a (lit- rratory-gecrated) len,%-like eddy responding to the presenc or a solid cylinder. The

, cqpiien~ shows The situcture of the cddly and thc intrusion (luring the various stages of the interaction. Physical cof- .antsf - 3.35
s", AP/P 1.0052; T =2l.5*C. The procr-is shown in (a-F) lasted for about 20 seconds- the dian'cr of the cylind(, is 5 cm. Note

that, (i) ai padlock flow is indeed cstabhsL, as predicted by tht theory, (ii) the eddy does not rotate around the cviinder, (iii) the
lenis renis ins roughly circular as assumed -,the development of the theory, and (iv) dviring tie interaction thc eddy groAws in time
N.-cause of the continuous injectien of dye> salty water throt.gh the Kittom (sc text).
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A,4

Flo. 10, The coalr-cence of two quasi-geostrophic anticyclones in a two-Iayer basin (adapted
from Griffiths and f~pfinger, 1987). Photogropliq were taken at the elapsed times shown on the
counter (in background rotation periods). Coalesence begins at the first frame and ends in the
second. The diameter of thc cddes beore the interaction wvas 18 cmn: for other details sec Griffithis
and I-opfingcr 19K;. Note that, as the inter.Action bcgins, fluid from the bluc vortex is engulfing
the red vortex and thv: ultimatel , two ad lcut spirals are formed as suggested by ournmodel.
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place, iAs can be seen in Fig. 9, the intrusion predicted leaving spirals even though Griffiths and Hopfinger's
by the theory (and shown in Fig. 6a) is clearly evident: (1987) experiments involved inear quasi-geostrophic
also, the interaction clearly leads to a padlock flow as eddies whereas our process addresses nonlinear lenses.
suggk:sted by the theo y (Fig. 61b). As pointed our earlier, the main dynamical dilierence

It should be pointed out that, because of mechanical between these two kinds of eddies is that Griffiths and
limitations, the injection could not be terminated dur- Hopfinger's eddies interacted before they touched each
ing the actual execution of the experiment. Conse- other whereas our vortices do not sense each other un-
quently, the lens continued to slowl, grow in size dur- less a mutual boundary is etablished. It should also
ing th interaction as is apparent in Fig. 9. This did be pointed out that the numerical experiments of
not have a major effect on the results because the McCreary and Kundu (1987) also suggest that merging
growth was small compared to a propagation speed of takes place through the formation of intrusions and
the intrusion. It should also be mentioned that, due to arms.
the fact that the upper layer was finite rather than in- As far as the application of our general merging pro-
finite and due to the conservation of potential vorticity cess to Cresswell's (1982) study is concerned, it appears
and angular momentum, a weak anticyclone was that the essential dynamics may be similar. Because of
formed on top of the lens. Its influence on the inter- the simplifications involved, a detailed quantitative
action as probably minor because the ratio of the lens comparison is, obviously, impossible. However, the fact
depth to .i~e total depth was small (about 1/ 10) so that that our model suggests a mechanism for eddy merging
the speeds on top were also small. is, of course, in agreement with Cresswell's observa-

tions. The time scale for merging [relation (2.2) which
7. General comments gives - 30 days for E = 0.1 andf - 10-  s - ] is also

appropriate, even though it is difficult to say what the
Before discussing the application of our results to actual value of c should be.

actual merging in the ocan, it is appropriate to corn- A potentially serious difference between Cresswell's
ment on the "replacement" of one of the interacting observations and the present study is the fact that
eddies by a solid cylinder. An obvious similarity be- Cresswell's eddies were with unequal densities whereas
tween a colliding eddy and a colliding cylinder is that our model addresses eddies with identical densities. It
both features dre expected to exert a pressure on the, is easy to see, however, that such a difference is not
eddy as they collide with it, and both features have major because all that it implies is that the mean po-
similar geometry in the x-y plane. As we saw earlier, sition of the intrusions along the rims will not be taking
the exerted pressure is the key to the merging process place on the same level. Instead, the mean position of
and, therefore, it is believed that a solid cylinder pro- the intrusions will take place on different levels as
vides an adequate "analog." shown schematically in Fig. 11. The major cause-f

However, there are also some important differences the merging-the establishment of a mutual boundary
between the solid cylinder and an actual eddy. For ex- with a nonzero vanishing depth-is present in both the
z.rple, although both the actual eddy and the solid collision of eddies with equal densities and the collision
cylinder are subject to pressure forces, the former can of eddies with unequal densities. The laboratory ex-
adjust itse To the surrounding pressure, whereas the periments of Nof and Simon (1987) on eddies with
latter remains unaltered. In addition, as pointed out unequal density support these considerations.
earlier, the actual eddy is drained via the intrusions so An additional aspect of Cresswt.l's study that is not
that a steady state is not reached before a complete present in our study is the observation of a clockwise
merging is achieved. " migration of the entire eddies (Fig. 1). It is difficult to

While we should be on guard against oversimplified say what the causes of such an effect could be but it
models (such as this ore may seem, at first, to be), might be a result of the transient merging process which
attacking Lhe complete merging problem analytically we have not studied in detail.
appears to be hopeless. Even numerical integrations
cannot provide the desired solution because of the dif-
ficulty in handling fronts 0). Some simplifications 8. Summary

are, therefore, necessary and examination of the cyl-
inder-eddy int-raction is useful for understanding the A conceptual qualitative model for the merging of
basic processes in question. Namely, the results of our two isolated lens-like eddies has been developed with
analytical study pinpoint the effects which one should the assumptions that: (i) the eddies are embedded in
look for in more complic ted and more realistic rod- an infinitely barotropic fluid; (ii) with the exception
els. It is worth pointing out that there is a similarity of shock waves which are presumed to be prc znt dur-
between our proposed merging mechanism (Figs. 3 and ing the transient merging piocess, all motions are fic-
4) and the laboratory observations of Griffiths and tionless and hydrostatic; (iii) mass is conserv ! during
Hopfinger (1987) (see Fig. 10). Both include inter- the merging.
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intrusion of intrusion of flow. Using a constraint associated with the conser-
vortex 2 vor ex 1 vation of torque (i.e., moment of momentum) and a

perturbation scheme, we have constructed the detailed
(X:1- solution even though the simplified problem is nonlin-

1111(tf7e7lefo7 t11111 ear. A set of laboratory experiments supports our an-
alytical analysis of the padlock flow (Fig. 9).

Eddies with equal densities With the aid of the above'model, it has been shown
that two lens-like eddies which are compressed against
each other will merge within the period -O(f 52f)-i
[where e is the relative distance that each vector is
squeezed]. Following Nof and Simon (1987), it is
speculated that during the merging the potential vor-
ticity cf penetrating oceanic vortices is altered via the

intrusion of intrusion of action of shock waves near the nose of the tentacles.
vor ex 2 vortex 1 This is based on: 1) several studies (e.g., Griffiths 1986;

Nof 1987) which have shown that transient intisusions
heavy jicontain breaking waves or shocks (bores) and 2) a re-

7 7 77 / cent study (Nof 1986b) which illustrated that shock
waves cause major alterations in the potential vorticity.

Eddies with unequal densities The details of the potential vorticity alteration by the

FiG. 1I. A cross section of pairing vortices. The upper panel shows action of shock waves in the intrusion is quite com-
eddies with identical densities, their merging is qualitatively displayed plicated and is beyond the scope of this study; it will
in Figs. 3 and 4. The lower panel displays eddies with unequal den- be the focus of a future investigation. Finally, it should
sities. While the merging is generated by the establishment of a mutual be pointed out that the observations of Griffiths and
boundary with a nonvanishing depth as in the equal density case, Hopfinger (1987) (Fig. 10) and the recent numerical
the final situation is different from that displayed by Fig. 4a. Here,
instead of forming two adjacent spirals, the lighter vortex is "climbing" experments of McCreary and Kundu (t987) also il-
on top of the hedvier lens. This is sup:-orted by the laboratory eZ- lustrate that the merging of anticyclones takes place
periments of Nof and Simon (1987). via the establishment of arm-, and tentacles.
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fact that particles along the peripheries do not have APPENDIY
sufficient energy to rise to the mutual nonzero depth
(Fig. 2). The establishment of tentacles causes the ed- List of Symbols
dies to wrap around each other (Fig. 3). As time goes A,, B, Integration constants associated with (5.1)
on, the tentacles become longer and longer so that they A3, B3  Integration constants associated with (5.7)
effectively "drain". the vortices. Ultimately, a single and (5.8). Their relationship to -y3") is
vortex corresponding to two adjacent spirals is formed given by (5.12).
(Fig. 4). b Radius of eddy for energy calculations

While the details of the above process can be easily (section 1).
described in a qualitative manner, it is impossible to E Total energy (kinetic plus potential).
rigorously prove the complete process analytically be- f The Coriolis parameter.
cause it is both nonlinear and three-dimensional (x, g, "Reduced gravity" (gAp/p where g is the
y, t). It is, however, possible to prove analytically that gravitational acceleration and Ap is the
the establishment of tentacles is inevitable. To how density difference between the layers).
this, we have conceptually replaced one of the inter- A Maximum depth of vortex (i.e., depth at
acting vortices by a solid cylinder (Figs. 5 and 6). This the point of no speed); it is also the
simplification removes the time dependency from the maximum depth of the padlock flow at
problem because there is now only one tentacle which, point, A.
upon engulfing the cylinder, forms a steady "padlock" hB Depth at point B (Fig. 2).
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h* Nondimensional depth (h/1). a system whose origin is situated at the
i,f Section 2--subscripts which denote the center of the solid cylinder.

initial and final state (respectively), lit a An integration constant associated with the
section 3, "i" (1, 2, 3) denotes associa- solution of (4.1).
tion with various sections (3. 1). 71 Distance between the edge of the padlock

r Radius in polar coordinates whose origin flow (in section 1) and the edge of the
is located at the center of the solid cyl- undisturbed vortex (nondimensional-
inder. ized by 2r2Rj) .

Rd Deformation radius (g'71) 2/f Distance between the edge of the intrusion
ro In section 3-radius of solid cylinder(Fig, (in section 3) and the surface of' the

6b); in section 4 it is shown that, for out solid cylinder (nondimensionalized by
case, r0 is also the radius of the undis- 2V2Rd).
turbed vortex, 2(2g'h) . A nondimensional coefficient associated

r* Nondimensional radius in a polar coor- with the second-order flow in section 2.dinates system with an origin at the cen- It is found to be equal to 0.366.
ter of the cylinder. In section 2-the distance that each vortex

Nordimensional radius and angle in a po- is "pushed" into the other (Fig. 2); in
lar coordinate system whose origin is lo- section 3-the distance between the
cated at the center of the undisturbed edge of the undisturbed vortex and the
vortex (i.e., center of padlock flow), edge of the cylinder (Fig. 6b). Note that

tell Merging time. the undisturbed vortex is defined as a
UA, B S r oed along the x axis (i.e., in a Cartesian zero potential vorticity lens which is

coordinates) for points A and B (Fig. aligned with the center and depth of the
2). padlock flow (i.e., it has the same center

1t, V Speeds in Cartesian coordinates whose or- and depth as the padlock flow).
igin is located at the center of the solid Streamfunction.
cylinder (Fig. 6b). q, Nondimensional streamfunction.

I*, v* Nonrdimensional speeds in Cartesian co- Integration in a counterclockwise (clock-
ordinates whose origin is located at the ,J J wise) manner along a closed curve.
center of the solid cylinder (Fig. 6b):

')(), Velocity and depth (in Cartesian coordi-
ht ° )  nates located at the center of the solid
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